
Nidaba: a distributed scalable PKI with a
stable price for certificate operations

Denis Rystsov
rystsov.denis@gmail.com

nidaba-pki.org

3 May 2014 (attested by Bitcoin)

Abstract

A distributed PKI would solve the problem of trusting the authorities
in the key technologies behind the Internet. Its creation is a complex task,
since the system has to be scalable, has to provide a stable price for certificate
registration and has to prevent cyber squatting.

Nidaba has all thementioned properties, moreover it protects a blockchain
from being forked behindhand and it has the same level of protection as Bit-
coin does.

This paper describes the architecture behind Nidaba.

1 Introduction
Nidaba is a distributed PKI1 based on the Bitcoin protocol2. On the low level
Nidaba is a hash table where the key is a unique name (domain) and the value is a
public key. An element of the hash table — a pair of a unique name and a public
key — is called a certificate.

Nidaba can be used to build a distributed certificate authority (CA), a dis-
tributed OpenID3 or a distributed DNS.

1Public Key Infrastructure, http://en.wikipedia.org/wiki/Public_key_infrastructure
2A Peer-to-Peer Electronic Cash System, http://bitcoin.org/bitcoin.pdf
3http://en.wikipedia.org/wiki/OpenID

1

mailto:rystsov.denis@gmail.com
http://nidaba-pki.org/
http://en.wikipedia.org/wiki/Public_key_infrastructure
http://bitcoin.org/bitcoin.pdf
http://en.wikipedia.org/wiki/OpenID

Let's describe how one may build a Nidaba-based distributed CA. First we
choose a pair of public and private keys and announce them both. The pair is a
marker: all SSL certificates signed with the private key should be processed in
a special way. The owner of a site who wishes to use the distributed CA should
choose a private key, put a corresponding public key to Nidaba using a canonical
URL of the site as a unique name, then issue a certificate using the openly known
private key and use the generated certificate as a regular SSL certificate. If the
site's visitor supports distributed CA, they recognize the marker and check whether
the certificate's public key matches the value retrieved from Nidaba by the site's
canonical URL. If the visitor doesn't support distributed CA, they would be warned
that the site uses an untrusted certificate authority.

The distributed CAwould decouple authentication from a distribution channel.
If this idea is applied to DNS, it produces a distributed DNS: we just need to sign
an address of a domain with a private key corresponding to the public key stored
in Nidaba with the domain as a unique name; and to distribute the signed address
in a Kadmilia-like network.

Nidaba can also be easily used as a distributed OpenID provider: if a person
uses the name of their public key in Nidaba as the username, then, as a proof of
their identity, a site might ask the user to sign a provided message with their private
key.

Before we discuss the architecture of Nidaba, we should answer several ques-
tions: "Why should the PKI be distributed?" and "Why should we provide a stable
price for certificate registration?".

1.1 Why should the PKI be distributed?
User registry system is a vital part of many technologies like DNS and HTTPS. If
any of them is compromised, disastrous effects may follow. Therefore, they must
be secure and reliable. If the technology is centralized, there are some risks that
can't be eliminated by technological means.

The company behind the centralized solution may fail or change its strategy.
For instance, if Facebook goes bankrupt, then all the sites that use Facebook as an
OAuth provider are also affected, since the users of these sites are unable to prove
their identity any longer.

Moreover, a government may force a company to compromise the data of its
users. For example, if a government influences the ICANN and some trusted cer-
tificate authority, it can organize an invisible man-in-the-middle attack on any
opposition site.

2

1.2 Why should we provide a stable price for certificate regis-
tration?

This question can be separated in two parts: "Why should we pay for a distributed
solution" and "Why should the price for a certificate registration be stable?".

A distributed solution works if at any givenmoment of time there is a sufficient
number of active nodes. If the work of the nodes is voluntary or is paid from
donations, there is a risk of "tragedy of the commons": each participant of the
network could think that her contribution to the greater good is negligible, and
give up.

If the price is not controlled, there is a risk that it would be too high or too
low. If it is too high, there will be no users. If it is too low, the activity of cyber
squatters and vandals would increase. So there is a need for rules to hold the price
in a fixed corridor.

1.3 Analogs
There are several user registry systems based on the Bitcoin protocol. Namecoin
and Twister are among them.

Namecoin4 is a deflationary cryptocurrency similar to Bitcoin, which extends
the Bitoin protocol with several domain operations. Each domain is unique and has
an associated value. To register a new domain, one needs to pay the network and
transaction fees with the intrinsic currency, NMC. The network fee was initially
introduced to decrease the cyber squatters' activity, but now its value is too low to
do it. The mining reward is exponentially decreasing, and when it reaches zero,
the miners would start working for only the transaction fee. So there is a risk
of the "tragedy of the commons" situation: a miner gains more profit right now if
they include transactions with any transaction fee, but this behavior drives average
transaction fee below mining profitability in the future.

Twister5 is a distributed microblogging service. One part of it is a distributed
name registry, where anyone can register a name free of charge. The users also
keep their nodes active free of charge. Hashcash-like scheme6 is used to protect
from cyber squatters.

The Namecoin economy is not stable, and it may suffer from the tragedy of the
commons. There are also no mechanisms to control the price of name registration.

4Wikipedia. Namecoin, http://en.wikipedia.org/wiki/Namecoin
5Twister - a P2P microblogging platform, http://arxiv.org/pdf/1312.7152v1.pdf
6Hashcash - A proof-of-work system http://en.wikipedia.org/wiki/Hashcash

3

http://en.wikipedia.org/wiki/Namecoin
http://arxiv.org/pdf/1312.7152v1.pdf
http://en.wikipedia.org/wiki/Hashcash

Twister has no economy, and may also suffer from the tragedy of the commons,
since all the activity is voluntary.

Twister and Namecoin are not scalable, ignore cyber squatting, and don't adjust
to raising computer power, which may lead to vandalism.

2 Price stability
Let's see how Nidaba provides price stability.

Miners get rewarded when they work for the benefit of the network. A miner
can't transfer this reward to another person, but can use it to register a new certifi-
cate or to prolong an existing one. This scheme allows to create a market between
reward holders and users willing to register or prolong a certificate.

To register or to prolong a certificate it is necessary to destroy some quantity
of reward. This quantity (the price) is constant on a small interval of time. The
reader can find the rules that describe how this quantity is changed over time later
in the article.

The base price is the minimal quantity of reward needed to prolong a certificate
for a minimum period of time. If we speak about a specific certificate, the price
is called the price of ownership of the certificate. The price of ownership is equal
to or greater than the base price. It may be higher because of an auction for the
name. The price of ownership is expressed as a multiplier to the base price.

The base price is adjusted over time to reflect the increase of an averageminer's
performance, but at the start of the network it is chosen to be equal to the quantity
that allows an average miner to prolong a certificate for one year, if they mine for
one month.

A miner's reward per block consists of two parts. The main part is proportional
to the current difficulty. Since the current difficulty is proportional to the current
total network power, the expected value of a miner's profit depends solely on their
own power. Thus a miner who joined the network at the beginning and a miner
who did it when the network was mature, would gain an equal reward if they had
the same power.

The second part of the reward per block is equal to 10% of the total reward
spent on registration and prolongation in the block. It adds an incentive for miners
to include transactions into a block.

An owner of a certificate must prolong it once in several blocks. For conve-
nience, each certificate has an account assigned to it, from which the payment for

4

the prolongation is automatically withdrawn. The owner may transfer an arbitrary
amount of currency to prolong a certificate for some time ahead.

To avoid overproduction of reward, it has an expiration date, after which it can
no longer be transferred to a certificate account. The expiration date makes the
reward more similar to futures contracts than to gold. So, from here onwards, the
reward is also referred to as futures or means. Besides the expiration date, there is
an account fee to avoid overproduction: once in several blocks, a small percent of
means (account fee) are withdrawn from the certificate account and destroyed. The
accumulated account fee for a year is equal to 50% of the means on the account
in the beginning of the year. This rule makes it more profitable to prolong the
certificate for a short period time several times a year than one time for the whole
year.

This scheme provides a permanent and uniform demand for reward.
The given rules provide an equilibrium of price for certificate operations: if

there is an overproduction of futures, then the price per future (price per certificate
operation) goes down. Mining becomes unprofitable for some of the miners, and
they leave the network. The total power decreases until the supply of futures goes
down to the demand level. If the demand for futures rises, then the price per future
goes up. It attracts new miners, and the network power increases until the supply
of futures meets the demand level.

3 Base price adjusting
An average miner's performance increases over time, so the production cost (time)
to generate futures decreases, and the price for certificate operations decreases too.
This violates the principle of price stability. So we need to adjust the base price
according to the increase of an average miner's performance.

There is a trick to figure out an average miner's performance: we encourage
a registrar to do an arbitrary quantity of work when they register or prolong a
certificate. It is possible to measure the average performance based on the sub-
mitted information. According to the increasing of the average performance, the
base price must be increased. The price is adjusted if the average performance has
changed more than twofold since the last adjustment.

To add an incentive for a registrar to do the addition work the system return
back 50% of their payment for the certificate operation if they hit the top 10%
productive registrars (measured by that work).

5

4 Time and correction of difficulty
Nidaba uses Bitcoin to fix a moment when a block was mined.

Any person can fix a moment but only the earliest would get a reward for it,
so it is more likely that a miner would fix a block right after he mined it.

To fix a Nidaba block a person calculates its SHA256 hash code, uses the value
as the hash of a public key, calculates the corresponding address in the Bitcoin net-
work and transfers a small fraction of bitcoin to the address. The transfer of bitcoin
to the Nidaba's block address in the Bitcoin network is called an observation. Ob-
servations are Bitcoin's transactions. Since all Bitcoin transactions are ordered,
all observations are also ordered, and it is valid to use the "before" and "after"
relations.

When a user receives the confirmation about of the observation, they wrap the
data about the observation (hash of a Bitcoin's block with the transaction, a path
fromMerkle tree root to the transaction and hash of the fixing Nidaba's block) into
an observation transaction, and broadcast it to the Nidaba network.

Let an observation transaction contain the hash of a Nidaba block X and an
observation o. It is included into the Nidaba chain if the following conditions are
met:

1. There are no more than 6 blocks after X

2. No observation transaction forX with observation that is before o is included
present in the chain

3. The earliest observation of any block before X is before o

4. The earliest observation of any block after X is after o

When there are more than 6 blocks after X , the block creation time is defined
as the earliest observation of X . If no one has provided an observation, then the
block creation time of X is equal to the creation time of the next block.

Just like Bitcoin, Nidaba maintains a constant speed of block generation, if the
Nidaba blocks are mined too often or too rarely, then a difficulty correction occurs
to adjust the speed.

Later in the article we use an intrinsic time. The intrinsic time is measured
by the Nidaba blocks that passed since some event. Also an intrinsic time can be
refferenced by regularweeks or day, in that case we need to multiply a regular time
interval by the Nidaba' block generation rate. For instance, Bitcoin's int. day is
equal to 144 blocks, since the Bitcoin's block generation rate is 6 blocks per hour.

6

5 Forks
Miners work independently on adding new blocks to the chain. If they add a block
simultaneously, the chain of blocks becomes a tree. In this case, it is important
to provide an algorithm to choose the main branch. The algorithm should have
several properties.

1. The chosen branch should be the hardest to fork

2. The choice of themain branch should be independent from the other branches
on the tree. It means that if we take a tree and choose a main branch, then
for any subtree within that main branch, the choice of the main branch must
not change if the algorithm is run once again

3. The choice of the main branch should not change if we add the same tail to
the all branches (independence from the future)

4. The choice of the main branch should not depend on the past. It means
that if we add an arbitrarily prefix before the fork occurred, the choice of
the main branch should not change. This property is not necessary, but is
very convenient, since we can ignore the common prefix when we compare
branches

Nidaba uses an algorithm which meets the demands. Other than that, the al-
gorithm also guarantees that the difficulty of forking the chain behindhand (e.g.
if a user decides to fork a chain on Tuesday, and to fork all the operations since
Monday) is close to the difficulty of forking a Bitcoin chain.

Let us consider a fork.

..B1

. B2

. B3

.

B1
4

.

B2
4

.

B1
5

.

B2
5

......

The user should calculate the score for each branch, and the branch with the
highest score is chosen to be the main one. Suppose that we have a set of branches
{B1 ← Bj

i } and we want to determine the main branch. First, we calculate the

7

maximum of block creation time T = max {t(Bj
i)}, then we calculate the score

and choose the branch that has the maximum value.

score of B1 ← Bn = f(B1 ← Bn, T) =
n∑

i=1

v(Bi) · qT−t(Bi)

Where v(Bi) is the sum of rewards of block Bi and all the means transferred
with it; q is a fixed constant.

5.1 Correctness
Nominally a score of a particular branch depends on the other branches via the T
parameter. Therefore, we may suppose that adding a branch with a low score may
affect the choice of the main one. Let us show that this is not so.

Lemma 5.1. Adding of a new branch to the tree affects the choice of the main
branch if and only if the added branch has the highest score.

Proof. Suppose we added a new branch B1 ← X to the set and recalculated the
scores. If the score of the new branch is maximal, when the new branch is the
main. Otherwise we have two cases: t(X) ≤ T and t(X) > T .

In the first case, the new value of T matches the old one, from which it follows
that the new values of score match the old ones, and the choice of main branch
doesn't change.

For the second case, let's mark the new value of T as T ′ and explore how the
change of T affects the values of score:

f(B1 ← Bn, T
′) =

n∑
i=1

v(Bi) · qT
′−t(Bi)

=
n∑

i=1

v(Bi) · q(T
′−T)+T−t(Bi)

= qT
′−T

n∑
i=1

v(Bi) · qT−t(Bi)

= qT
′−T f(B1 ← Bn, T)

It turns out that with increasing of T , the score for every branch is multiplied
by the same coefficient. Therefore, the branch with the maximum score doesn't
change, and the lemma is true.

8

Moreover, this lemma implies the property of independence from other branches.

Let us demonstrate that the other properties are also held.

Lemma 5.2. The algorithm of choosing the main branch is independent from the
past and the future

..B1

. B2

. B3

.

B1
4

.

B2
4

.

B1
5

.

B2
5

. B6

. B7

.........

Proof. Let us examine the difference between the branches.

f(B1 ← B1
4 ← B7, T)− f(B1 ← B2

4 ← B7, T) =(
3∑

i=1

v(Bi) · qT−t(Bi) +
5∑

i=4

v(B1
i) · qT−t(B1

i) +
7∑

i=6

v(Bi) · qT−t(Bi)

)
−(

3∑
i=1

v(Bi) · qT−t(Bi) +
5∑

i=4

v(B2
i) · qT−t(B2

i) +
7∑

i=6

v(Bi) · qT−t(Bi)

)
=

=
5∑

i=4

v(B1
i) · qT−t(B1

i) −
5∑

i=4

v(B2
i) · qT−t(B2

i)

The difference depends neither on the tail (Bi|i=6,7) nor on the prefix (Bi|i=1,2,3),
therefore the properties of independence are held.

6 Cyber squatting
It is impossible to avoid disputes about the names. In a centralized system, the
company behind the system may be the arbiter (like in a UDRP case with DNS).
This scheme is impossible with distributed systems.

Nidaba uses a penny auction to resolve the name issue:

9

1. After a reward holder registers a certificate for a user, the user becomes the
owner of the certificate. The price of the ownership matches the base price
but the certificate's name is automatically put up for auction

2. During the auction, any user may open an account associated with the cer-
tificate's name and transfer an arbitrary quantity of means to the account

3. When there is enough means on the account, the account's owner may offer
a new highest price of ownership and become the owner of the certificate

4. The price of ownership is withdrawn from the owner's account once in sev-
eral blocks. If there aren't means on the account, then the owner loses their
ownership

5. A user may bid if the means on that user's account plus the already with-
drawn means is greater than duration of the auction · new price of owner-
ship. After a bid their account is immediately charged, so the sum of all the
withdrawn means is exactly equal to the product

6. After 3 int. months since the auction has started, and 2 int. weeks after the
last ownership change, the auction is over and the current ownership is final

7. No auction participant receives their means back

Because Nidaba wouldn't gain popularity immediately, it is important to make
the duration of auction longer at the beginning. For example one int. year instead
of 3 int. months.

7 Certificate management
Certificate management includes raising bids on an auction, changing the public
key and disavowing from the certificate ownership.

By default, an authentication is done via the private key of the certificate. The
user is authorized for all the operations with the certificate. Such an approach is
vulnerable, since if a malicious party steals the private key, then the only option
available to the owner is to issue a disavowal from the certificate's ownership and
to start a new auction for the same name (or to reattach to the current auction if it
hasn't finished).

The default authentication may be changed. Nidaba allow to set up an another
pair of public and private keys to access the certificate operations. If a malicious

10

party gets a certificate's private key, the owner could change the certificate's public
key (a disavowal of a public key). If the malicious party gets the private key to
control operations, the owner would disavow the certificate's ownership and start
a new auction for the certificate's name.

The authentication isn't limited to those schemes. Nidaba uses a simple lan-
guage to describe authentication and authorization. For example, it allows to de-
scribe the following schemes.

Schema A. An owner of a certificate's account can allow anyone to bid for their
sake in a auction. The owner may limit a bid to be no more than 20% above the last
bid to prevent a malefactor to make an astronomical bid to sabotage the auction.
In addition the owner may deny to make a bid for their sake if they is already the
owner of the certificate to avoid the malefactor doing several sequential bids to
push the price of ownership higher. Also the owner may limit the bid for their
sake to be no more that 5x of base price.

Scheme B. An owner of a certificate can introduce a list of public keys and
provide access to certificate management operations only if there is a quorum of
keys. Also the list itself may be altered if the quorum is reached. Beside this, a
disavowal of the certificate ownership can be set up to be valid if it is signed by
the quorum of current list or by the quorum of the list which was actual no more
than N blocks ago. This scheme fits well for companies:

1. All the power isn't consolidated in one hands

2. If there is a turnover, the control over certificate remains inside the company

3. If there is an unexpected change of list of keys, the formal owners can issue
an disavowal of ownership

4. A compromise of former employees' private keys can't compromise the com-
pany

8 Scalability
Solutions based on the Bitcoin protocol have a scalability issue because eachminer
has to store all the network information (the blockchain) locally. Nidaba solves
this issue, but before we describe a solution we need to realize why the blockchain
grows.

First of all, the chain's size depends on the number of certificates it stores. It
is impossible to predict the growth of registrations, so it is impossible to predict

11

the growth of chain's size. However, if we disable new registration, then the size
of the chain still continues to grow due to a prolongation of already registered
certificates. Since each certificate should be prolonged regularly, the growth of
the chain is linear.

Nidaba's solution to the scalability issue is based on the assumption that if a
chain holds only a fixed number of certificates, then its linear growth is compen-
sated by the annual growth of storage capacity. So a Nidaba chain has a limit of
certificates it can hold, when a number of registered certificates approaches the
limit, two new independent chains are introduced.

New certificates are registered in the new chains. If a certificate owner forgets
to prolong a certificate in the old chain, then a new certificate can be registered on
it.

If chains are independent then two certificates with the same name may be reg-
istered in the different chains. The conflict is resolved by a convention. Among
certificates with the same name on the different chains the one whose auction
started earlier is believed to be valid and the rest are invalid and should be ig-
nored. We can use the order relation on blocks of different Nidaba chains because
block creation time is a Bitcoin transaction and an order is defined on them.

9 Shares
Nidaba uses shares as a mechanism to add an incentive for some people (stock-
holders) to develop, maintain, advertise the network and to create satellite projects.
Shares are very similar to bitcoins: they can be split, merged and transferred (sold)
to an another person. But a share allows the stockholder to receive dividends in
the form of reward. Each block has an additional reward that equals to 10% of the
block's reward and is transferred to stockholders in proportion with the number of
shares they hold.

When new chains are introduced, they inherit the same distribution of shares
as the parent chain.

An initial distribution of the shares may be done via an external IPO, via an
internal IPO, by a committee as reward to core developers or via mining as an
additional form of reward.

The external IPO is an auction in which the developers of the network sell
shares to the public just after the network has been started. This strategy allows
anyone to become a stockholder and enriches the developers of the network after
the network is developed.

12

The internal IPO is an auction that is very similar to the auction for a certifi-
cate's name. With the internal IPO a user should buy means and bids them in a
auction. It allows anyone to become a stockholder, but enriches the first miners of
the network.

A committee of honest and well-known members of community publicly dis-
tributes shares between core developers as a reward and makes bounty for new
features. It allows anyone who influences the network to become a stockholder
and adds an incentive for developers to work, but enriches them after network is
ready in proportion with their efforts.

If the shares are distributed via mining it allows any miner to become a stock-
holder and enriches the first miners.

10 Name resolving
There are different strategies for name resolving. Each of them is a trade off be-
tween security, required storage capacity, and latency of resolving. The strategies
aren't unique for Nidaba and can be used over Namecoin, Twister and other sys-
tems.

10.1 Full copy
A user stores all blockchains locally. This strategy provides maximum security
and lowest latency, but requires a lot of storage capacity. The initial initialization
also takes a lot of time.

10.2 Partial copy
A user downloads all blockchains but doesn't store public keys. When the user
needs to resolve a name, they know in which block it should be, so after a request
to third party they can check whether the response is correct.

This strategy requires less storage capacity, provides the same level of security
and the same time of initialization, but increases the latency of resolving.

10.3 Headers only
A user downloads and stores only headers. When the user makes a request to third
party, it receives a certificate and its coordination in a Merkle tree, so the user can

13

check that the returned certificate is in a blockchain and hasn't expired yet.
The strategy is less secure because a malefactor may register a certificate with

the same name on a parallel chain and return it. They may also return a certificate,
but without the information that later in a blockchain it was compromised (the
owner issued a disavowal of ownership).

With this strategy, a third party must sign its responses so the user could prove
that a third party is a malefactor, moreover a user could do a lot of requests to
different third parties to increase security.

This method requires far less storage capacity, the initialization is done faster,
the latency is the same with the partial copy, but some degree of trust to third party
is needed.

10.4 Full trust with check
A user doesn't store any Nidaba data and asks a third party to resolve a name. A
response must be signed to provide to user a chance to prove that a third party is a
malefactor. An advantage over DNSSEC is that there are many of parties, so the
user has an alternative if one of the parties is compromised. Moreover the user can
do several requests to some of them to decreases the risk of disinformation.

11 Conclusion
We have described a PKI that is distributed and resistant to cyber squatters. This
description contains several techniques that can be used with other technologies
based on the Bitcoin protocol, or with altcoins. Among them are

1. A technique based on the demand and supply principle to provide a stable
price per reward on an external market

2. A way of adjusting internal price per some operation to the increasing per-
formance of an average miner

3. An idea to use Bitcoin to determinate the moment when a block was mined

4. A method to increase resistance to behindhand forking to a Bitcoin level

5. A solution to the scalability issue of the Bitcoin protocol based technologies

14

However this paper describes rather an idea of a distributed PKI than a particu-
lar implementation. All constants mentioned above are chosen to look reasonable.
If an implementation follows this article, the constants should be checked on an
appropriate model.

15

Attesting
This paper is attested by Bitcoin. It means that anyone can check when it was
created. To do it a person should calculate a Bitcoin address based on the sha256
hash code of the paper and check when a transfer to the address was done.

To find out the address you should use the following command

sha256sum -b nidaba.pdf | awk '{print $1}' | python
hashToAddress.py

The sources of hashToAddress.py are listed on the next page

16

import hashlib

def digest(method, hash):
h = hashlib.new(method, hash.decode("hex"))
return h.hexdigest()

ripemd160 = lambda x: digest("ripemd160", x)
sha256 = lambda x: digest("sha256", x)

__b58chars = "123456789" + \
"ABCDEFGHJKLMNPQRSTUVWXYZ" + \
"abcdefghijkmnopqrstuvwxyz"

__b58base = len(__b58chars)

def b58(hash):
data = hash.decode("hex")
long_value = 0
for (i, c) in enumerate(data[::-1]):
long_value += (256**i) * ord(c)

result = ""
while long_value >= __b58base:
div, mod = divmod(long_value, __b58base)
result = __b58chars[mod] + result
long_value = div

result = __b58chars[long_value] + result
nPad = 0
for x in data:
if x != '\0': break
nPad += 1

return (__b58chars[0]*nPad) + result

footprint = raw_input()
footprint = "00" + ripemd160(footprint)
footprint = footprint + sha256(sha256(footprint))[:8]
print b58(footprint)

17

License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 In-
ternational License

18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

References
[1] Satoshi Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System". 2009.

[2] Miguel Freitas, "twister - a P2P microblogging platform". 2013.

19

	Introduction
	Why should the PKI be distributed?
	Why should we provide a stable price for certificate registration?
	Analogs

	Price stability
	Base price adjusting
	Time and correction of difficulty
	Forks
	Correctness

	Cyber squatting
	Certificate management
	Scalability
	Shares
	Name resolving
	Full copy
	Partial copy
	Headers only
	Full trust with check

	Conclusion

